ACRHEM – Laser Primer

Assignment 7

07-11-09

Submission date : 10-11-2009

- 1. A cavity has a mirror separation of 0.5 m.
 - a. What is number of longitudinal modes this cavity can support?
 - b. What are the minimum and the maximum frequencies?
 - c. What is the separation of two consecutive modes?
- 2. A He Ne laser is made from the above cavity.
 - a. How many L-modes can be supported?
 - b. What is the mode number of these modes?
 - c. What are the wavelengths of these modes?
 - d. If the cavity length changes by 1 μ , what are changes w.r.t a-c ?
- 3. Draw the graphs –

(a)
$$S(x) = 21\frac{x}{2}\exp(-\frac{x^2}{4})$$
 (b) $S^2(x)$
(c) $F(x) = 32\frac{(4x^2+2)}{3}\exp(-\frac{x^2}{9})$ (d) $F^2(x)$

- 4. a. Write down the E filed equation for a TEM $_{m,n}$ mode.
 - b. What is the corresponding expression for the Intensity?
 - c. What are the resonant longitudinal frequencies of a TEM $_{m,n,q}$ mode $_{?}$
- 5. a. Briefly explain the differences between the fundamental mode and the higher order Transverse modes.
 - b. How Transverse mode selection is achieved?
 - c. How Longitudnal mode selection is achieved?
 - d. Briefly explain in what kind of applications one needs a G Beam/Higher order modes?
- 6. Complete the following table –

Laser	Gain Bandwidth	No. of Longitudnal
		modes (typical)
He-Ne		
Nd:YAG		
Nd:Glass		
Ti:SAP		
Dye		