ACRHEM - Laser Primer

Assignment 5

Submission by October 6

1. Derive the ABCD matrix for free space and a thin lens. Take refractive index as a parameter in both the cases.
2. A Plane wave falls on the flat side of an plano convex lens. Derive the expression for the electric field after the lens?
3. A He-Ne laser has a beam waist of 1 mm . Calculate the spot size at a distance of (a) 10 mm ,(b) 10 cm , (a) 10 km , from the beam waist.
4. A telescope with lenses $f 1$ and $f 2$ separated by a distance $\mathrm{f} 1+\mathrm{f} 2$. It is positioned at $\mathrm{z}=0$. Derive an expression for beam width after the telescope.
5. Plot $H(v)=\frac{1}{\left(v^{2}+a^{2}\right)}$ for different values of a.
6. $\quad Q(h)=\frac{h}{\left(h^{2}+a^{2}\right)}$ for different values of a.
7. Derive a relation between $\mathrm{W}(\mathrm{z})$ and $\mathrm{R}(\mathrm{z})$.
8. Where does the beam waist of any laser lie - inside or outside the cavity. What experiment you will perform to determine its position?
9. A G beam is used in a Michelson Interferometer. Derive the expression for the interference pattern.
10. Find out about the amplitude and area version of a Gaussian.
