ACRHEM - Laser Primer

1. The centre of curvature of the wavefront in a TEMoo laser mode is not at $\mathrm{z}=0$. Plot a graph for the separation of CoC from $\mathrm{z}=0$ as a function of z .
2. Plotting the Gaussian :
(a) Find the Full Width Half Maximum of the function $M(x)=M_{0} \exp \left(-\frac{x^{2}}{p^{2}}\right)$ in terms of p.
(b) Plot a graph between M and x and indicate M_{0} and p on the graph.
(c)On the same graph, draw the curves by changing p to $2 p$ and $4 p$.
3. Define the parameters :
(a) Spot size
(b) Beam waist
(c) Raleigh range
4. Plot the amplitude maximum of the intensity distribution as a function z . Indicate the Raleigh range on the graph.
5. Give three examples where Gaussian appears as a solution. Comment on the meaning of the FWHM in those examples.
6. For a plane wave that is propagating (Fig. P1.1) in the direction $\theta=45^{\circ} \phi=45^{0}$ the light field observed at $\mathrm{p}(2,3,4) \times 10^{-6} \mathrm{~m}$ is expressed as

$$
E=E_{0} e^{j 67.32-j 2.44 \times 10^{15} t}
$$

(a) Find the wavelength of light in the medium.
(b) Find the index of refraction of the medium.

